- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Arroyos, Vicente (2)
-
Fuller, Sawyer (2)
-
Iyer, Vikram (2)
-
Johnson, Kyle (2)
-
Villanueva, Raul (2)
-
Aliseda, Alberto (1)
-
Elberier, Tilboon (1)
-
Ferran, Amélie (1)
-
Gollakota, Shyamnath (1)
-
Schulz, Adriana (1)
-
Yin, Dennis (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sub-gram flying robots have transformative potential in applications from search and rescue to precision agriculture to environmental monitoring. However, a key gap in achieving autonomous flight for these applications is the low lift to weight ratio of flapping wing and quadrotor designs around 1 g or less. To close this gap, we propose a helictoper-style design that minimizes size and weight by leveraging the high lift, reliability, and low-voltage of sub-gram motors. We take an important step to enable this goal by designing a light-weight, micfrofabricated flybar mechanism to passively stabilize such a robot. Our 48 mg flybar is folded from a flat carbon fiber laminate into a 3D mechanism that couples tilting of the flybar to a change in the angle of attack of the rotors. Our design uses flexure joints instead of ball-in-socket joints common in larger flybars. To expedite the design exploration and optimization of a microfabricated flat-folded flybar, we develop a novel user-in-the-loop bi-level optimization workflow that combines Bayesian optimization design tools and expert feedback. We develop four template designs and use this method to achieve a peak damping ratio of 0.528, an 18.9x improvement from our initial design. Compared to a flybar-less rotor with a near 0 damping ratio, our flybar-rotor mechanism maintains a stable roll and pitch with relative deviations < 1°. Our results show that, if combined with a counter-torque mechanism such as a tail rotor, our miniaturized flybar could mechanically provide attitude stability for a sub-gram helicopter.more » « less
-
Johnson, Kyle; Arroyos, Vicente; Ferran, Amélie; Villanueva, Raul; Yin, Dennis; Elberier, Tilboon; Aliseda, Alberto; Fuller, Sawyer; Iyer, Vikram; Gollakota, Shyamnath (, Science Robotics)Using wind to disperse microfliers that fall like seeds and leaves can help automate large-scale sensor deployments. Here, we present battery-free microfliers that can change shape in mid-air to vary their dispersal distance. We designed origami microfliers using bistable leaf-out structures and uncovered an important property: A simple change in the shape of these origami structures causes two dramatically different falling behaviors. When unfolded and flat, the microfliers exhibit a tumbling behavior that increases lateral displacement in the wind. When folded inward, their orientation is stabilized, resulting in a downward descent that is less influenced by wind. To electronically transition between these two shapes, we designed a low-power electromagnetic actuator that produces peak forces of up to 200 millinewtons within 25 milliseconds while powered by solar cells. We fabricated a circuit directly on the folded origami structure that includes a programmable microcontroller, a Bluetooth radio, a solar power–harvesting circuit, a pressure sensor to estimate altitude, and a temperature sensor. Outdoor evaluations show that our 414-milligram origami microfliers were able to electronically change their shape mid-air, travel up to 98 meters in a light breeze, and wirelessly transmit data via Bluetooth up to 60 meters away, using only power collected from the sun.more » « less
An official website of the United States government
